test/nextgen/operators/matmul/pack_rhs/matmul_pack_rhs_quant_wrapper.cpp
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // | ||
| 2 | // SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com> | ||
| 3 | // | ||
| 4 | // SPDX-License-Identifier: Apache-2.0 | ||
| 5 | // | ||
| 6 | |||
| 7 | #include "test/nextgen/operators/matmul/pack_rhs/matmul_pack_rhs_quant_wrapper.hpp" | ||
| 8 | |||
| 9 | #include <array> | ||
| 10 | #include <cstddef> | ||
| 11 | #include <cstdint> | ||
| 12 | #include <optional> | ||
| 13 | #include <string_view> | ||
| 14 | #include <vector> | ||
| 15 | |||
| 16 | #include "kai/kai_common.h" | ||
| 17 | #include "test/common/abi_checker.hpp" | ||
| 18 | #include "test/common/assert.hpp" | ||
| 19 | #include "test/common/span.hpp" | ||
| 20 | #include "test/nextgen/harness/tensor.hpp" | ||
| 21 | #include "test/nextgen/operators/matmul/matmul_bias_mode.hpp" | ||
| 22 | #include "test/nextgen/operators/matmul/matmul_config.hpp" | ||
| 23 | #include "test/nextgen/operators/matmul/matmul_pack_args.hpp" | ||
| 24 | #include "test/nextgen/operators/matmul/matmul_slots.hpp" | ||
| 25 | |||
| 26 | namespace kai::test { | ||
| 27 | |||
| 28 | namespace { | ||
| 29 | |||
| 30 | 1400 | std::optional<size_t> determine_bias_tensor_id(Span<const Tensor> tensors) { | |
| 31 | 1400 | const MatMulConfig& config = tensors.at(MATMUL_SLOT_CONFIG).value<MatMulConfig>(); | |
| 32 | |||
| 33 |
2/3✓ Branch 0 taken 1015 times.
✓ Branch 1 taken 385 times.
✗ Branch 2 not taken.
|
1400 | switch (config.bias_mode) { |
| 34 | case MatMulBiasMode::NO_BIAS: | ||
| 35 | 385 | return std::nullopt; | |
| 36 | |||
| 37 | case MatMulBiasMode::PER_N: | ||
| 38 | 1015 | return MATMUL_SLOT_BIAS_RAW; | |
| 39 | |||
| 40 | default: | ||
| 41 | ✗ | KAI_TEST_ERROR("Not supported."); | |
| 42 | } | ||
| 43 | 1400 | } | |
| 44 | |||
| 45 | } // namespace | ||
| 46 | |||
| 47 | ✗ | std::string_view MatMulPackRhsQuantWrapper::name() const { | |
| 48 | ✗ | return m_name; | |
| 49 | } | ||
| 50 | |||
| 51 | 200 | std::vector<size_t> MatMulPackRhsQuantWrapper::run_inputs(Span<const Tensor> tensors) const { | |
| 52 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
200 | std::vector<size_t> inputs = {MATMUL_SLOT_RHS_T_QDATA, MATMUL_SLOT_RHS_T_QSCALE}; |
| 53 | |||
| 54 |
1/2✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
|
200 | const std::optional<size_t> bias_id = determine_bias_tensor_id(tensors); |
| 55 |
2/2✓ Branch 0 taken 145 times.
✓ Branch 1 taken 55 times.
|
200 | if (bias_id.has_value()) { |
| 56 |
2/4✓ Branch 0 taken 145 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 145 times.
✗ Branch 3 not taken.
|
145 | inputs.emplace_back(bias_id.value()); |
| 57 | 145 | } | |
| 58 | |||
| 59 | 200 | return inputs; | |
| 60 | 200 | } | |
| 61 | |||
| 62 | 200 | std::vector<size_t> MatMulPackRhsQuantWrapper::ref_inputs(Span<const Tensor> tensors) const { | |
| 63 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
200 | std::vector<size_t> inputs = { |
| 64 | MATMUL_SLOT_RHS_T_QDATA_SIGN, MATMUL_SLOT_RHS_T_QDATA_SIGN_SUM, MATMUL_SLOT_RHS_T_QSCALE}; | ||
| 65 | |||
| 66 |
1/2✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
|
200 | const std::optional<size_t> bias_id = determine_bias_tensor_id(tensors); |
| 67 |
2/2✓ Branch 0 taken 145 times.
✓ Branch 1 taken 55 times.
|
200 | if (bias_id.has_value()) { |
| 68 |
2/4✓ Branch 0 taken 145 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 145 times.
✗ Branch 3 not taken.
|
145 | inputs.emplace_back(bias_id.value()); |
| 69 | 145 | } | |
| 70 | |||
| 71 | 200 | return inputs; | |
| 72 | 200 | } | |
| 73 | |||
| 74 | 600 | std::vector<size_t> MatMulPackRhsQuantWrapper::steps(Span<const size_t> shape, Span<const Tensor> tensors) const { | |
| 75 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT_MSG(shape.size() == 2, "Only N and K dimensions are expected."); |
| 76 | |||
| 77 | 600 | const auto& pack_args = tensors.at(MATMUL_SLOT_PACK_ARGS).value<MatMulPackArgs>(); | |
| 78 | |||
| 79 | 600 | const size_t n_step = m_kernel.get_n_step(pack_args.nr); | |
| 80 | 600 | const size_t shape_k = shape.at(1); | |
| 81 | |||
| 82 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
600 | return {n_step, shape_k}; |
| 83 | 600 | } | |
| 84 | |||
| 85 | 200 | void MatMulPackRhsQuantWrapper::populate_constant_info(Span<Tensor> tensors) const { | |
| 86 | 200 | Tensor& rhs_t_qdata = tensors.at(MATMUL_SLOT_RHS_T_QDATA); | |
| 87 | 200 | Tensor& rhs_t_qdata_sign_sum = tensors.at(MATMUL_SLOT_RHS_T_QDATA_SIGN_SUM); | |
| 88 | 200 | Tensor& rhs_t_qscale = tensors.at(MATMUL_SLOT_RHS_T_QSCALE); | |
| 89 | 200 | Tensor& packed_rhs = tensors.at(MATMUL_SLOT_IMP_RHS_PACKED); | |
| 90 | |||
| 91 | 200 | rhs_t_qdata.set_format(m_src_data_format); | |
| 92 | 200 | rhs_t_qdata_sign_sum.set_format(m_src_sum_format); | |
| 93 | 200 | rhs_t_qscale.set_format(m_src_scale_format); | |
| 94 | 200 | packed_rhs.set_format(m_dst_format); | |
| 95 | |||
| 96 | 200 | const std::optional<size_t> bias_tensor_id = determine_bias_tensor_id(tensors); | |
| 97 |
2/2✓ Branch 0 taken 55 times.
✓ Branch 1 taken 145 times.
|
200 | if (bias_tensor_id.has_value()) { |
| 98 | 145 | Tensor& bias_raw = tensors.at(bias_tensor_id.value()); | |
| 99 | 145 | bias_raw.set_format(m_src_bias_format); | |
| 100 | 145 | } | |
| 101 | 200 | } | |
| 102 | |||
| 103 | 600 | void MatMulPackRhsQuantWrapper::run( | |
| 104 | Span<const size_t> full_shape, Span<const size_t> tile_coords, Span<const size_t> tile_shape, | ||
| 105 | Span<Tensor> tensors) const { | ||
| 106 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT_MSG(full_shape.size() == 2, "Only N and K dimensions are expected."); |
| 107 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT_MSG(tile_coords.size() == 2, "Only N and K dimensions are expected."); |
| 108 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT_MSG(tile_shape.size() == 2, "Only N and K dimensions are expected."); |
| 109 | |||
| 110 | 600 | const size_t full_n = full_shape.at(0); | |
| 111 | 600 | const size_t full_k = full_shape.at(1); | |
| 112 | |||
| 113 | 600 | const size_t start_n = tile_coords.at(0); | |
| 114 | 600 | const size_t start_k = tile_coords.at(1); | |
| 115 | |||
| 116 | 600 | const size_t size_n = tile_shape.at(0); | |
| 117 | 600 | const size_t size_k = tile_shape.at(1); | |
| 118 | |||
| 119 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT(start_k == 0); |
| 120 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT(size_k == full_k); |
| 121 | |||
| 122 | 600 | const std::optional<size_t> bias_tensor_id = determine_bias_tensor_id(tensors); | |
| 123 | 600 | const bool has_bias = bias_tensor_id.has_value(); | |
| 124 | |||
| 125 | 600 | const Tensor& rhs_t_qdata = tensors.at(MATMUL_SLOT_RHS_T_QDATA); | |
| 126 | 600 | const Tensor& rhs_t_qscale = tensors.at(MATMUL_SLOT_RHS_T_QSCALE); | |
| 127 | 600 | const Tensor& bias_raw = tensors.at(bias_tensor_id.value_or(MATMUL_SLOT_BIAS_RAW)); | |
| 128 | 600 | Tensor& packed_rhs = tensors.at(MATMUL_SLOT_IMP_RHS_PACKED); | |
| 129 | |||
| 130 | 600 | const auto& pack_args = tensors.at(MATMUL_SLOT_PACK_ARGS).value<MatMulPackArgs>(); | |
| 131 | |||
| 132 | 600 | packed_rhs.set_shape({full_n, full_k}).allocate(); | |
| 133 | |||
| 134 | 600 | const size_t rhs_stride = m_src_data_format->compute_size({1, full_k}); | |
| 135 | |||
| 136 | 600 | const size_t rhs_offset = m_src_data_format->compute_offset(full_shape, tile_coords); | |
| 137 | 600 | const size_t imp_rhs_offset = m_kernel.get_rhs_offset(start_n, rhs_stride); | |
| 138 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT(imp_rhs_offset == rhs_offset); |
| 139 | |||
| 140 | 600 | const size_t scale_offset = m_src_scale_format->compute_offset({full_n}, {start_n}); | |
| 141 | 600 | const size_t bias_offset = m_src_bias_format->compute_offset({full_n}, {start_n}); | |
| 142 | |||
| 143 | 600 | const size_t packed_rhs_offset = m_dst_format->compute_offset(full_shape, tile_coords); | |
| 144 | 1200 | const size_t imp_packed_rhs_offset = | |
| 145 | 600 | m_kernel.get_rhs_packed_offset(start_n, full_k, pack_args.nr, pack_args.kr, pack_args.sr); | |
| 146 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT(imp_packed_rhs_offset == packed_rhs_offset); |
| 147 | |||
| 148 | 600 | const size_t packed_rhs_size = packed_rhs.data().size(); | |
| 149 | 1200 | const size_t imp_packed_rhs_size = | |
| 150 | 600 | m_kernel.get_rhs_packed_size(full_n, full_k, pack_args.nr, pack_args.kr, pack_args.sr); | |
| 151 |
1/4✓ Branch 0 taken 600 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
600 | KAI_TEST_ASSERT(imp_packed_rhs_size == packed_rhs_size); |
| 152 | |||
| 153 | 600 | const Span<const std::byte> rhs_tile = rhs_t_qdata.data().subspan(rhs_offset); | |
| 154 | 600 | const Span<const std::byte> scale_tile = rhs_t_qscale.data().subspan(scale_offset); | |
| 155 |
2/2✓ Branch 0 taken 435 times.
✓ Branch 1 taken 165 times.
|
600 | const Span<const std::byte> bias_tile = has_bias ? bias_raw.data().subspan(bias_offset) : Span<const std::byte>(); |
| 156 | 600 | const Span<std::byte> packed_lhs_tile = packed_rhs.data().subspan(packed_rhs_offset); | |
| 157 | |||
| 158 | 600 | const kai_rhs_pack_qs4cxs1s0_param params{1, 8}; | |
| 159 | |||
| 160 | 1200 | abi_check([&] { | |
| 161 | 1200 | m_kernel.run( | |
| 162 | 600 | 1, size_n, size_k, pack_args.nr, pack_args.kr, pack_args.sr, | |
| 163 | 600 | reinterpret_cast<const uint8_t*>(rhs_tile.data()), reinterpret_cast<const float*>(bias_tile.data()), | |
| 164 | 600 | reinterpret_cast<const float*>(scale_tile.data()), packed_lhs_tile.data(), 0, ¶ms); | |
| 165 | 600 | }); | |
| 166 | 600 | } | |
| 167 | |||
| 168 | 200 | void MatMulPackRhsQuantWrapper::compute_reference(Span<const size_t> shape, Span<Tensor> tensors) const { | |
| 169 |
1/4✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
200 | KAI_TEST_ASSERT_MSG(shape.size() == 2, "Only N and K dimensions are expected."); |
| 170 | 200 | const size_t shape_n = shape.at(0); | |
| 171 | |||
| 172 | 200 | const std::optional<size_t> bias_tensor_id = determine_bias_tensor_id(tensors); | |
| 173 | 200 | const bool has_bias = bias_tensor_id.has_value(); | |
| 174 | |||
| 175 | 200 | const Tensor& rhs_t_qdata_sign = tensors.at(MATMUL_SLOT_RHS_T_QDATA_SIGN); | |
| 176 | 200 | const Tensor& rhs_t_qdata_sign_sum = tensors.at(MATMUL_SLOT_RHS_T_QDATA_SIGN_SUM); | |
| 177 | 200 | const Tensor& rhs_t_qscale = tensors.at(MATMUL_SLOT_RHS_T_QSCALE); | |
| 178 | 200 | const Tensor& bias_raw = tensors.at(bias_tensor_id.value_or(MATMUL_SLOT_BIAS_RAW)); | |
| 179 | 200 | Tensor& ref_packed_rhs = tensors.at(MATMUL_SLOT_REF_RHS_PACKED); | |
| 180 | |||
| 181 | 200 | Buffer empty_bias; | |
| 182 | 200 | Span<const std::byte> bias_data; | |
| 183 | |||
| 184 |
2/2✓ Branch 0 taken 145 times.
✓ Branch 1 taken 55 times.
|
200 | if (has_bias) { |
| 185 |
1/2✓ Branch 0 taken 145 times.
✗ Branch 1 not taken.
|
145 | bias_data = bias_raw.data(); |
| 186 | 145 | } else { | |
| 187 |
3/6✓ Branch 0 taken 55 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 55 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 55 times.
✗ Branch 5 not taken.
|
55 | empty_bias = Buffer(m_src_bias_format->compute_size({shape_n})); |
| 188 |
1/2✓ Branch 0 taken 55 times.
✗ Branch 1 not taken.
|
55 | bias_data = empty_bias.view(); |
| 189 | } | ||
| 190 | |||
| 191 |
1/2✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
|
400 | ref_packed_rhs.set_shape(shape) |
| 192 |
1/2✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
|
200 | .set_format(m_dst_format) |
| 193 |
3/6✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 200 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 200 times.
✗ Branch 5 not taken.
|
400 | .set_data(m_dst_format->pack( |
| 194 |
4/8✓ Branch 0 taken 200 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 200 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 200 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 200 times.
✗ Branch 7 not taken.
|
400 | shape, std::array{rhs_t_qdata_sign.data(), rhs_t_qdata_sign_sum.data(), rhs_t_qscale.data(), bias_data})); |
| 195 | 200 | } | |
| 196 | |||
| 197 | } // namespace kai::test | ||
| 198 |