KleidiAI Coverage Report


Directory: ./
File: kai/ukernels/matmul/pack/kai_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme.c
Date: 2025-10-20 13:18:31
Coverage Exec Excl Total
Lines: 100.0% 29 13 42
Functions: 100.0% 7 0 7
Branches: -% 0 26 26

Line Branch Exec Source
1 //
2 // SPDX-FileCopyrightText: Copyright 2024-2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
3 //
4 // SPDX-License-Identifier: Apache-2.0
5 //
6
7 #if (!defined(__aarch64__) || !defined(__ARM_FEATURE_SVE2)) && !defined(_M_ARM64)
8 #error This file must be compiled for AArch64, FEAT_SVE2.
9 #else // Architectural features check.
10 #include "kai_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme.h"
11
12 #include <stddef.h>
13 #include <stdint.h>
14 #include <string.h>
15
16 #include "kai/kai_common.h"
17
18 enum {
19 NR = 2,
20 KR = 2,
21 MAX_N_STEP = NR * ((KAI_SME_VEC_LENGTH_MAX_BYTES / sizeof(uint16_t)) / KR),
22 };
23
24 typedef struct {
25 const void* bias_ptr;
26 size_t width;
27 size_t height;
28 size_t in_stride;
29 size_t out_stride;
30 const void* in;
31 void* out;
32 const void* pad_row;
33 } KernelArgs;
34
35 static const size_t kai_num_bytes_input = sizeof(uint16_t);
36 static const size_t kai_num_bytes_output = sizeof(uint16_t);
37 static const size_t kai_num_bytes_bias = sizeof(uint16_t);
38
39 void kai_kernel_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(const KernelArgs* args_ptr);
40
41 1512 size_t kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(void) {
42 1512 return NR * kai_get_sme_vector_length_u16() / KR;
43 }
44
45 126 size_t kai_get_rhs_offset_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(size_t n_idx) {
46 KAI_ASSUME(n_idx % kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme() == 0);
47
48 126 return n_idx * kai_num_bytes_input;
49 }
50
51 160 size_t kai_get_bias_offset_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(size_t n_idx) {
52 160 return n_idx * kai_num_bytes_bias;
53 }
54
55 378 size_t kai_get_rhs_packed_stride_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(size_t k) {
56 756 return kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme() *
57 378 (kai_num_bytes_bias + kai_roundup(k, KR) * kai_num_bytes_output);
58 }
59
60 252 size_t kai_get_rhs_packed_offset_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(size_t n_idx, size_t k) {
61 KAI_ASSUME(n_idx % kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme() == 0);
62
63 252 const size_t block_idx = n_idx / kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme();
64 504 return block_idx * kai_get_rhs_packed_stride_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(k);
65 252 }
66
67 126 size_t kai_get_rhs_packed_size_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(size_t n, size_t k) {
68 126 const size_t n_nr_blocks = kai_roundup(n, kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme());
69 252 return kai_get_rhs_packed_offset_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(n_nr_blocks, k);
70 126 }
71
72 126 void kai_run_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(
73 size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride_row, const void* rhs,
74 const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params) {
75 KAI_ASSUME(num_groups == 1);
76 KAI_ASSUME(nr == kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme());
77 KAI_ASSUME(kr == KR);
78 KAI_ASSUME(sr == 1);
79 KAI_ASSUME(rhs != NULL);
80 KAI_ASSUME(bias != NULL);
81 KAI_ASSUME(scale == NULL);
82 KAI_ASSUME(rhs_packed != NULL);
83 KAI_ASSUME(extra_bytes == 0);
84 KAI_ASSUME(params == NULL);
85
86 KAI_ASSERT(kai_get_n_step_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme() <= MAX_N_STEP);
87 static const uint16_t pad_row[MAX_N_STEP] = {0};
88
89 126 KernelArgs args;
90 126 args.bias_ptr = bias;
91 126 args.height = k;
92 126 args.width = n;
93 126 args.in = rhs;
94 126 args.out = rhs_packed;
95 126 args.in_stride = rhs_stride_row;
96 126 args.out_stride = kai_get_rhs_packed_stride_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(args.height);
97 126 args.pad_row = pad_row;
98
99 126 kai_kernel_rhs_pack_kxn_x16p2vlx2b_x16_x16_sme(&args);
100 126 }
101
102 #endif // Architectural features check.
103