benchmark/dwconv/dwconv_benchmark_logic.hpp
| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // | ||
| 2 | // SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com> | ||
| 3 | // | ||
| 4 | // SPDX-License-Identifier: Apache-2.0 | ||
| 5 | // | ||
| 6 | |||
| 7 | #pragma once | ||
| 8 | |||
| 9 | #include <array> | ||
| 10 | #include <cstddef> | ||
| 11 | #include <cstdint> | ||
| 12 | #include <functional> | ||
| 13 | #include <limits> | ||
| 14 | #include <memory> | ||
| 15 | #include <test/common/cpu_info.hpp> | ||
| 16 | #include <test/common/data_type.hpp> | ||
| 17 | #include <tuple> | ||
| 18 | #include <utility> | ||
| 19 | #include <vector> | ||
| 20 | |||
| 21 | #include "dwconv_interface.hpp" | ||
| 22 | #include "dwconv_runner.hpp" | ||
| 23 | #include "kai/kai_common.h" | ||
| 24 | |||
| 25 | #ifdef __GNUC__ | ||
| 26 | #pragma GCC diagnostic push | ||
| 27 | #pragma GCC diagnostic ignored "-Wswitch-default" | ||
| 28 | #endif // __GNUC__ | ||
| 29 | |||
| 30 | #include <benchmark/benchmark.h> | ||
| 31 | |||
| 32 | #ifdef __GNUC__ | ||
| 33 | #pragma GCC diagnostic pop | ||
| 34 | #endif // __GNUC__ | ||
| 35 | |||
| 36 | namespace kai::benchmark { | ||
| 37 | using Buffer = std::vector<uint8_t>; | ||
| 38 | using CpuRequirement = std::function<bool()>; | ||
| 39 | using DataType = test::DataType; | ||
| 40 | |||
| 41 | struct DwConvShape { | ||
| 42 | size_t input_height; | ||
| 43 | size_t input_width; | ||
| 44 | size_t num_channels; | ||
| 45 | 1 | std::array<size_t, 2> stride{{1, 1}}; // {stride_height, stride_width} | |
| 46 | 1 | std::array<size_t, 4> padding{{0, 0, 0, 0}}; // {pad_top, pad_bottom, pad_left, pad_right} | |
| 47 | 1 | std::array<size_t, 2> dilation{{1, 1}}; // {dilation_height, dilation_width} | |
| 48 | }; | ||
| 49 | |||
| 50 | struct DwConvOutputShape { | ||
| 51 | size_t height; | ||
| 52 | size_t width; | ||
| 53 | }; | ||
| 54 | |||
| 55 | 16 | inline bool supports_unit_stride_and_dilation(size_t stride_h, size_t stride_w, size_t dilation_h, size_t dilation_w) { | |
| 56 |
3/6✓ Branch 0 taken 16 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 16 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 16 times.
|
16 | return stride_h == 1 && stride_w == 1 && dilation_h == 1 && dilation_w == 1; |
| 57 | } | ||
| 58 | |||
| 59 | 15 | inline bool supports_unit_stride_and_dilation(const DwConvShape& shape) { | |
| 60 | 15 | return supports_unit_stride_and_dilation(shape.stride[0], shape.stride[1], shape.dilation[0], shape.dilation[1]); | |
| 61 | } | ||
| 62 | |||
| 63 | 13 | inline DwConvOutputShape compute_dwconv_output_dims( | |
| 64 | const DwConvShape& shape, size_t filter_height, size_t filter_width) { | ||
| 65 | 39 | const auto compute_dim = [&](size_t idx) -> size_t { // 0: height, 1: width | |
| 66 |
2/2✓ Branch 0 taken 13 times.
✓ Branch 1 taken 13 times.
|
26 | const size_t input = (idx == 0) ? shape.input_height : shape.input_width; |
| 67 |
2/2✓ Branch 0 taken 13 times.
✓ Branch 1 taken 13 times.
|
26 | const size_t filter = (idx == 0) ? filter_height : filter_width; |
| 68 | 26 | const size_t stride = shape.stride[idx]; | |
| 69 | 26 | const size_t dilation = shape.dilation[idx]; | |
| 70 | 26 | const size_t pad_before = shape.padding[idx * 2]; | |
| 71 | 26 | const size_t pad_after = shape.padding[idx * 2 + 1]; | |
| 72 | 26 | const size_t effective_kernel = (filter - 1) * dilation + 1; | |
| 73 | 26 | const size_t input_plus_pad = input + pad_before + pad_after; | |
| 74 | |||
| 75 |
4/8✓ Branch 0 taken 26 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 26 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 26 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 26 times.
|
26 | if (stride == 0 || filter == 0 || effective_kernel == 0 || input_plus_pad < effective_kernel) { |
| 76 | ✗ | return 0; | |
| 77 | } | ||
| 78 | 26 | const size_t numerator = input + pad_before + pad_after - effective_kernel; | |
| 79 | 26 | return numerator / stride + 1; | |
| 80 | 26 | }; | |
| 81 | |||
| 82 | 13 | return DwConvOutputShape{compute_dim(0), compute_dim(1)}; | |
| 83 | 13 | } | |
| 84 | |||
| 85 | // Factory to construct a runner matching the registered micro-kernel | ||
| 86 | using RunnerFactory = std::function<std::unique_ptr<DwConvRunner>(const DwConvTraits&, DataType, DataType)>; | ||
| 87 | |||
| 88 | /// Benchmarks a depthwise convolution micro-kernel using a provided runner factory | ||
| 89 | 3 | inline void kai_benchmark_dwconv( | |
| 90 | ::benchmark::State& state, const RunnerFactory& runner_factory, const DwConvTraits& traits, const DataType src_type, | ||
| 91 | const DataType dst_type, const DwConvRhsConfig& rhs_cfg, const CpuRequirement& is_cpu_supported) { | ||
| 92 |
2/2✓ Branch 0 taken 1 time.
✓ Branch 1 taken 2 times.
|
3 | if (!is_cpu_supported()) { |
| 93 |
2/4✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 2 times.
✗ Branch 3 not taken.
|
2 | state.SkipWithMessage("Unsupported CPU feature"); |
| 94 | 2 | return; | |
| 95 | } | ||
| 96 | |||
| 97 | 1 | const size_t num_channels = static_cast<size_t>(state.range(0)); | |
| 98 | 1 | const size_t input_height = static_cast<size_t>(state.range(1)); | |
| 99 | 1 | const size_t input_width = static_cast<size_t>(state.range(2)); | |
| 100 | 1 | const size_t stride_h = static_cast<size_t>(state.range(3)); | |
| 101 | 1 | const size_t stride_w = static_cast<size_t>(state.range(4)); | |
| 102 | 1 | const size_t pad_top = static_cast<size_t>(state.range(5)); | |
| 103 | 1 | const size_t pad_bottom = static_cast<size_t>(state.range(6)); | |
| 104 | 1 | const size_t pad_left = static_cast<size_t>(state.range(7)); | |
| 105 | 1 | const size_t pad_right = static_cast<size_t>(state.range(8)); | |
| 106 | 1 | const size_t dilation_h = static_cast<size_t>(state.range(9)); | |
| 107 | 1 | const size_t dilation_w = static_cast<size_t>(state.range(10)); | |
| 108 | |||
| 109 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | if (!supports_unit_stride_and_dilation(stride_h, stride_w, dilation_h, dilation_w)) { |
| 110 | ✗ | state.SkipWithMessage("Current DWConv micro-kernels only support stride=1 and dilation=1"); | |
| 111 | ✗ | return; | |
| 112 | } | ||
| 113 | |||
| 114 | // Buffer sizes | ||
| 115 | 1 | const size_t filter_height = traits.get_filter_height(); | |
| 116 | 1 | const size_t filter_width = traits.get_filter_width(); | |
| 117 | 3 | DwConvShape runtime_shape{}; | |
| 118 | 1 | runtime_shape.input_height = input_height; | |
| 119 | 1 | runtime_shape.input_width = input_width; | |
| 120 | 1 | runtime_shape.num_channels = num_channels; | |
| 121 | 1 | runtime_shape.stride = {stride_h, stride_w}; | |
| 122 | 1 | runtime_shape.padding = {pad_top, pad_bottom, pad_left, pad_right}; | |
| 123 | 1 | runtime_shape.dilation = {dilation_h, dilation_w}; | |
| 124 | 5 | const auto [output_height, output_width] = compute_dwconv_output_dims(runtime_shape, filter_height, filter_width); | |
| 125 | |||
| 126 |
2/4✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 time.
|
1 | if (output_height == 0 || output_width == 0) { |
| 127 | ✗ | state.SkipWithMessage("Invalid DWConv dimensions derived from CLI flags"); | |
| 128 | ✗ | return; | |
| 129 | } | ||
| 130 | |||
| 131 | 1 | size_t input_size = input_height * input_width * num_channels * data_type_size_bytes(src_type); | |
| 132 | 3 | size_t output_size = output_height * output_width * num_channels * data_type_size_bytes(dst_type); | |
| 133 | |||
| 134 | // SME/SVE scaling for bandwidth accounting | ||
| 135 | #if defined(__ARM_FEATURE_SVE2) || defined(_M_ARM64) | ||
| 136 | if (test::cpu_has_sme() || test::cpu_has_sme2()) { | ||
| 137 | const size_t vl = kai_get_sme_vector_length_u32(); | ||
| 138 | input_size *= vl; | ||
| 139 | output_size *= vl; | ||
| 140 | } | ||
| 141 | #endif | ||
| 142 | |||
| 143 | // RHS sizes by layout | ||
| 144 | 1 | size_t rhs_packed_size = 0, rhs_weights_size = 0, rhs_bias_size = 0; | |
| 145 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 time.
|
1 | if (rhs_cfg.layout == DwConvRhsLayout::Packed) { |
| 146 | − | KAI_ASSERT_ALWAYS_MSG( | |
| 147 | rhs_cfg.get_packed_rhs_size, "Packed DWConv benchmarks must provide get_packed_rhs_size callback"); | ||
| 148 | 1 | rhs_packed_size = rhs_cfg.get_packed_rhs_size(filter_height, filter_width, num_channels); | |
| 149 | 1 | } else { | |
| 150 | ✗ | rhs_weights_size = num_channels * (filter_height * filter_width) * (rhs_cfg.weights_elem_bits / 8); | |
| 151 | ✗ | rhs_bias_size = num_channels * (rhs_cfg.bias_elem_bits / 8); | |
| 152 | } | ||
| 153 | |||
| 154 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
1 | const Buffer src(input_size); |
| 155 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | Buffer dst(output_size); |
| 156 | |||
| 157 | // Construct runner and configure common parameters | ||
| 158 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | auto runner = runner_factory(traits, src_type, dst_type); |
| 159 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | runner->set_input_dims(input_height, input_width); |
| 160 |
3/6✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 time.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 time.
✗ Branch 5 not taken.
|
3 | runner->set_output_dims(output_height, output_width); |
| 161 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | runner->set_channels(num_channels); |
| 162 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | runner->set_padding(pad_top, pad_bottom, pad_left, pad_right); |
| 163 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | runner->set_clamp(-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity()); |
| 164 | |||
| 165 | 1 | Buffer rhs_packed, rhs_weights, rhs_bias; | |
| 166 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 time.
|
1 | if (rhs_cfg.layout == DwConvRhsLayout::Packed) { |
| 167 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | rhs_packed = Buffer(rhs_packed_size); |
| 168 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | runner->prepare(rhs_packed.data(), nullptr, nullptr, nullptr); |
| 169 | 1 | } else { | |
| 170 | ✗ | rhs_weights = Buffer(rhs_weights_size); | |
| 171 | ✗ | rhs_bias = Buffer(rhs_bias_size); | |
| 172 | ✗ | runner->prepare(nullptr, rhs_weights.data(), rhs_bias.data(), nullptr); | |
| 173 | } | ||
| 174 | |||
| 175 | // This is the benchmarking loop | ||
| 176 |
7/12✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 time.
✗ Branch 3 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
✓ Branch 6 taken 1 time.
✓ Branch 7 taken 1 time.
✓ Branch 8 taken 1 time.
✗ Branch 9 not taken.
✓ Branch 10 taken 1 time.
✗ Branch 11 not taken.
|
2 | for (auto _ : state) { |
| 177 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | runner->run(src.data(), dst.data()); |
| 178 | 1 | } | |
| 179 | |||
| 180 | 3 | const size_t num_ops = output_height * output_width * num_channels * filter_height * filter_width * 2; // MACs | |
| 181 | 2 | const size_t rhs_bytes = | |
| 182 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | (rhs_cfg.layout == DwConvRhsLayout::Packed) ? rhs_packed_size : (rhs_weights_size + rhs_bias_size); |
| 183 |
2/4✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 time.
✗ Branch 3 not taken.
|
1 | state.SetItemsProcessed(state.iterations() * num_ops); |
| 184 |
2/4✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 time.
✗ Branch 3 not taken.
|
1 | state.SetBytesProcessed(state.iterations() * (input_size + rhs_bytes + output_size)); |
| 185 | 3 | } | |
| 186 | |||
| 187 | } // namespace kai::benchmark | ||
| 188 |